Wavelet Formants Speaker Identification Based System via Neural Network
نویسندگان
چکیده
In this paper Discrete wavelet Transform with logarithmic Power Spectrum Density (PSD) are combined for speaker formants extraction, to be used as evident classification features. For classification, Feed Forward Back Propagation Neural Network FFBNN method is proposed. The Discrete Wavelet formants Neural Network DWFNNT system works with excellent capability of features tracking even with 0dB SNR. Text dependant system is used, so that the system can be applied in password or PINs identification in any security system. The proposed system is compared with K-means algorithm based clustering method. The results show excellent performance with 93.21% Recognition Rate (RR).
منابع مشابه
Significance of formants from difference spectrum for speaker identification
In this paper, we describe a prototype speaker identification system using auto-associative neural network (AANN) and formant features. Our experiments demonstrate that formants extracted from difference spectrum perform significantly better than formants extracted from normal spectrum for the task of speaker identification. We also demonstrate that formants from difference spectrum provide com...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملThe Use of Wavelets in Speaker Feature Tracking Identification System Using Neural Network
Continuous and Discrete Wavelet Transform (WT) are used to create text-dependent robust to noise speaker recognition system. In this paper we investigate the accuracy of identification the speaker identity in nonstationary signals. Three methods are used to extract the essential speaker features based on Continuous, Discrete Wavelet Transform and Power Spectrum Density (PSD). To have better ide...
متن کاملEvaluation and Analysis of Hybrid Intelligent Pattern Recognition Techniques for Speaker Identification
The rapid momentum of the technology progress in the recent years has led to a tremendous rise in the use of biometric authentication systems. The objective of this research is to investigate the problem of identifying a speaker from its voice regardless of the content (i.e. text-independent), and to design efficient methods of combining face and voice in producing a robust authentication syste...
متن کاملSpeaker Identification System Using Wavelet Transformation and Neural Network
In this Present study, the technique of wavelet transform and neural network were developed for speech based text-dependent and text0independent speaker identification. 390 feature were fed to feed-forward back propagation neural network for classification The function of feature extraction and classification are performed using wavelet and neural network system. The declared result shows that ...
متن کامل